Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available May 1, 2026
-
Small—but finite—fluid inertia can be leveraged to generate steady flows out of liquid vibrations around an immersed interface. In engineering, external high-frequency drivers allow this inertial rectification phenomenon, known as viscous streaming, to be employed in micron-scale devices for precise flow control, particle manipulation, and spatially controlled chemistry. However, beyond artificial settings, streaming has been hypothesized to be accessible by larger-scale biological systems pertaining to lower frequencies. Then millimeter-size organisms that oscillate or pulsate cilia and appendages in the 1 to range may be able to rectify surrounding flows, for feeding or locomotion, removing the need for external actuators, tethers, or tubing. Motivated by this potential for bio-hybrid robotic applications and biophysical exploration, here we demonstrate an living system able to produce streaming flows endogenously, autonomously, and unassisted. Computationally informed, our biological device generates oscillatory flows through the cyclic contractions of an engineered muscle tissue, shaped in the form of a torus and suspended in fluid within a microparticle image velocimetry setup. Flow patterns consistent with streaming simulations are observed for low-frequency muscle contractions , either spontaneous or light-induced, illustrating system autonomy and controllability, respectively. Thus, by connecting tissue engineering with hydrodynamics, this work provides experimental evidence of biologically powered streaming in untethered, millimeter-scale living systems, endowing bio-hybrid technology with inertial microfluidic capabilities. It also illustrates the potential of combining bio-hybrid platforms and simulations to advance both biophysical understanding and fluid mechanics. Published by the American Physical Society2025more » « lessFree, publicly-accessible full text available July 1, 2026
-
Water in the form of windborne fog droplets supports life in many coastal arid regions, where natural selection has driven nontrivial physical adaptation toward its separation and collection. For two species of Namib desert beetle whose body geometry makes for a poor filter, subtle modifications in shape and texture have been previously associated with improved performance by facilitating water drainage from its collecting surface. However, little is known about the relevance of these modifications to the flow physics that underlies droplets’ impaction in the first place. We find, through coupled experiments and simulations, that such alterations can produce large relative gains in water collection by encouraging droplets to “slip” toward targets at the millimetric scale, and by disrupting boundary and lubrication layer effects at the microscopic scale. Our results offer a lesson in biological fog collection and design principles for controlling particle separation beyond the specific case of fog-basking beetles.more » « less
-
Recent studies on viscous streaming flows in two dimensions have elucidated the impact of body curvature variations on resulting flow topology and dynamics, with opportunities for microfluidic applications. Following that, we present here a three-dimensional characterization of streaming flows as functions of changes in body geometry and topology, starting from the well-known case of a sphere to progressively arrive at toroidal shapes. We leverage direct numerical simulations and dynamical systems theory to systematically analyse the reorganization of streaming flows into a dynamically rich set of regimes, the origins of which are explained using bifurcation theory.more » « less
-
Modern inertial microfluidics routinely employs oscillatory flows around localized solid features or microbubbles for controlled, specific manipulation of particles, droplets, and cells. It is shown that theories of inertial effects that have been state of the art for decades miss major contributions and strongly underestimate forces on small suspended objects in a range of practically relevant conditions. An analytical approach is presented that derives a complete set of inertial forces and quantifies them in closed form as easy-to-use equations of motion, spanning the entire range from viscous to inviscid flows. The theory predicts additional attractive contributions toward oscillating boundaries, even for density-matched particles, a previously unexplained experimental observation. The accuracy of the theory is demonstrated against full-scale, three-dimensional direct numerical simulations throughout its range.more » « less
-
We investigate the ability of an active body (master) to manipulate a passive object (slave) purely via contactless flow-mediated mechanisms, motivated by potential applications in microfluidic devices and medicine (drug delivery purposes). We extend prior works on active–passive cylinder pairs by superimposing periodic oscillations to the master’s linear motion. In a viscous fluid, such oscillations produce an additional viscous streaming field, which is leveraged for enhancing slave transport. We see that superimposing oscillations robustly improves transport across a range of Reynolds numbers. Comparison with results without oscillations highlights the flow mechanisms at work, which we capitalize on to design (master) geometries for augmented transport. These principles are found to extend to three-dimensional active–passive shapes as well.more » « less
-
Abstract Natural creatures, from fish and cephalopods to snakes and birds, combine neural control, sensory feedback and compliant mechanics to effectively operate across dynamic, uncertain environments. In order to facilitate the understanding of the biophysical mechanisms at play and to streamline their potential use in engineering applications, we present here a versatile numerical approach to the simulation of musculoskeletal architectures. It relies on the assembly of heterogenous, active and passive Cosserat rods into dynamic structures that model bones, tendons, ligaments, fibers and muscle connectivity. We demonstrate its utility in a range of problems involving biological and soft robotic scenarios across scales and environments: from the engineering of millimeter-long bio-hybrid robots to the synthesis and reconstruction of complex musculoskeletal systems. The versatility of this methodology offers a framework to aid forward and inverse bioengineering designs as well as fundamental discovery in the functioning of living organisms.more » « less
An official website of the United States government
